题目内容

(2013•牡丹江一模)已知函数f(x)=
1+1nx
x

(1)若函数f(x)在区间(a,a+
1
3
)(a>0)
上存在极值点,求实数a的取值范围;
(2)知果当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)求证:[(n+1)!]2>(n+1)en-2+
2
n+1
,这里n∈N*,(n+1)!=1×2×3×…×(n+1),e为自然对数的底数.
分析:(1)先求出定义域,再对f(x)进行求导,利用导数研究函数f(x)的极值点问题,先求出极值点;
(2)已知条件当x≥1时,不等式f(x)≥
k
x+1
恒成立,将问题转化为k≤
(x+1)(1+lnx)
x
,利用了常数分离法,只要求出
(x+1)(1+lnx)
x
的最小值即可,可以令新的函数g(x),然后利用导数研究函数g(x)的最值问题,从而求出k的范围;
(3)利用(2)的恒成立式子,可有ln[k(k+1)]>1-
2
k(k+1)
,利用此不等式对所要证明的不等式两边进行放缩,从而进行证明;
解答:解:(1)函数f(x)的定义域为(0,+∞),f′(x)=
1
x
•x-(1+lnx)•1
x2
=-
lnx
x2

f′(x)>0?lnx<0?0<x<1,
f′(x)<0?lnx>0?x>1,
所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,函数f(x)在x=1处取得唯一的极值,
由题意,a>0,且a<1<a+
1
3
,解得
2
3
<a<1,
所以实数a的取值范围为
2
3
<a<1;
(2)当x≥1时,f(x)≥
k
x+1
?
1+lnx
x
k
x+1
?k≤
(x+1)(1+lnx)
x

令g(x)=
(x+1)(1+lnx)
x
(x≥1),由题意,k≤g(x)在[1,+∞)上恒成立,
g′(x)=
[(x+1)(1+lnx)]′•x-(x+1)(1+lnx)
x2
=
x-lnx
x2

令h(x)=x-lnx(x≥1),则h′(x)=1-
1
x
≥0,当且仅当x=1时取等号,
所以h(x)=x-lnx在[1,+∞)上单调递增,h(x)≥h(1)=1>0,
因此g′(x)=
h(x)
x2
>0,g(x)在[1,+∞)上单调递增,g(x)min=g(1)=2,
所以k≤2;
(3)由(2),当x≥1时,f(x)≥
2
x+1
,即
1+lnx
x
2
x+1

从而lnx≥1-
2
x+1
>1-
2
x

令x=k(k+1),k∈N+,则有ln[k(k+1)]>1-
2
k(k+1)

分别令k=1,2,3,…,n(n≥2)则有ln(1×2)>1-
2
1×2
,ln(2×3)>1-
2
2×3
,…,
ln[n(n-1)]>1-
2
(n-1)n
,ln[n(n+1)]>1-
2
n(n+1)

将这个不等式左右两端分别相加,则得,
ln[1×22×32×…×n2(n+1)]>n-2[
1
1×2
+
1
2×3
+…+
1
n(n+1)
]=n-2+
2
n+1

故1×22×32×…×n2(n+1)>en-2+
2
n+1
,从而[(n+1)!]2>(n+1)en-2+
2
n+1

当n=1时,不等式显然成立;
所以?n∈N+[(n+1)!]2>(n+1)en-2+
2
n+1
点评:此题难度比较大,考查了利用导数研究函数的单调性和最值问题,第三问难度最大,需要对不等式的两边进行放缩,巧妙利用第(2)问的条件得到一个不等式,利用这个不等式进行放缩证明,是我们常用的方法;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网