题目内容
已知等差数列的前项和为,公差为,且,则“”是“的最小值仅为”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
设双曲线的右焦点为,过点作与轴垂直的直线交两渐近线于,两点,且与双曲线在第一象限的交点为,设为坐标原点,若(,),,则该双曲线的离心率为( )
A. B. C.3 D.2
设为数列的前项和,且满足,则 ; .
某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时,若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.
(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
在中,角的对边分别为、、,,,则___________.
已知,且,则的最大值为( )
A. B.
C. D.
平面直角坐标系中,椭圆:()的离心率是,抛物线:的焦点是的一个顶点.
(1)求椭圆的方程;
(2)设是上的动点,且位于第一象限,在点处的切线与交于不同的两点,,线段的中点为,直线与过且垂直于轴的直线交于点.
(i)求证:点在定直线上;
(ii)直线与轴交于点,记△的面积为,△的面积为,求的最大值及取得最大值时点的坐标.
等比数列中,已知对任意正整数,,则等于( )
A. B. C. D.
已知向量的夹角为,且,,若,则( )
A. B.
C. D.