题目内容
【题目】在100x25的长方形表格中每一格填入一个非负实数,第行第列中填入的数为(如表 1)。然后将表1每列中的数按由大到小的次序从上到下重新排列为,。(如表2)求最小的自然数k,使得只要表1中填入的数满足则当i≥k时,在表2中就能保证成立。
表1 表2
【答案】97
【解析】
k的最小值为97.
取
这时,满足题设条件,重排后有 这时,
故k的最小值≥97.
(2)首先证明:表1中必有一行(设为第r行)的所有数必在重排后所得表2的前97行中都出现.事实上,若上述结论不成立,则表1的每一行中至少有一个数不在表2的前97行中出现,即表2的前97行中至多共有表1中100×24= 2400个数.这与表2的前97行共有25×97= 2425个数矛盾.
其次,由重排要求知表2中每列的数从上到下是由大到小排列的,故当i≥97时,
故当i≥97时,.综合1、2知k的最小值为97.
【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目,若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.
某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:
性别 | 选考方案确定情况 | 物理 | 化学 | 生物 | 历史 | 地理 | 政治 |
男生 | 选考方案确定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
选考方案待确定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 选考方案确定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
选考方案待确定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?
(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史科目的概率;
(Ⅲ)从选考方案确定的8名男生随机选出2名,设随机变量两名男生选考方案相同时,两名男生选考方案不同时,求的分布列及数学期望.