题目内容
16.数列{an}的前n项和为Sn,且Sn=-an+2n,(n∈N*).(1)证明:数列{an-2}是等比数列,并求数列{an}的通项;
(2)设bn=$\frac{{a}_{n}}{{a}_{n+1}}$+$\frac{{a}_{n+1}}{{a}_{n}}$-2,数列{bn}的前n项和为Tn.
①求证:4bn+1<bn;
②求证:Tn<$\frac{2}{9}$.
分析 (1)通过Sn=-an+2n与Sn+1=-an+1+2(n+1)作差、整理可知2an+1=an+2,变形可知an+1-2=$\frac{1}{2}$(an-2),进而可知数列{an-2}是以-1为首项、$\frac{1}{2}$为公比的等比数列,
计算即得结论;
(2)通过(1)可知bn=$\frac{1}{{2}^{n+1}-2}$-$\frac{1}{{2}^{n+1}-1}$.①通过通分可知bn=$\frac{1}{{2}^{n+1}-2}$•$\frac{1}{{2}^{n+1}-1}$,进而作商、放缩可知$\frac{{b}_{n+1}}{{b}_{n}}$<$\frac{1}{4}$;②通过4bn+1<bn可知bn+1<$\frac{1}{{4}^{n}}$•b1,利用Tn≤b1(1+$\frac{1}{4}$+…+$\frac{1}{{4}^{n-1}}$)计算、放缩即得结论.
解答 (1)证明:∵Sn=-an+2n,
∴Sn+1=-an+1+2(n+1),
两式相减得:an+1=an-an+1+2,
整理得:2an+1=an+2,
∴2an+1-4=an-2,即an+1-2=$\frac{1}{2}$(an-2),
又∵a1=-a1+2,即a1=1,
∴a1-2=1-2=-1,
∴数列{an-2}是以-1为首项、$\frac{1}{2}$为公比的等比数列,
∴an-2=-$\frac{1}{{2}^{n-1}}$,
∴an=2-$\frac{1}{{2}^{n-1}}$;
(2)由(1)可知an=2-$\frac{1}{{2}^{n-1}}$=$\frac{{2}^{n}-1}{{2}^{n-1}}$,an+1=$\frac{{2}^{n+1}-1}{{2}^{n}}$,
∴$\frac{{a}_{n}}{{a}_{n+1}}$-1=-$\frac{1}{{2}^{n+1}-1}$,$\frac{{a}_{n+1}}{{a}_{n}}$-1=$\frac{1}{{2}^{n+1}-2}$,
∴bn=$\frac{{a}_{n}}{{a}_{n+1}}$+$\frac{{a}_{n+1}}{{a}_{n}}$-2=$\frac{1}{{2}^{n+1}-2}$-$\frac{1}{{2}^{n+1}-1}$.
①证明:∵bn=$\frac{1}{{2}^{n+1}-2}$-$\frac{1}{{2}^{n+1}-1}$=$\frac{1}{{2}^{n+1}-2}$•$\frac{1}{{2}^{n+1}-1}$,
∴$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{({2}^{n+1}-2)({2}^{n+1}-1)}{({2}^{n+2}-2)({2}^{n+2}-1)}$=$\frac{1}{4}$•$\frac{({2}^{n+1}-2)({2}^{n+1}-1)}{({2}^{n+1}-1)({2}^{n+1}-\frac{1}{2})}$<$\frac{1}{4}$,
∴4bn+1<bn;
②证明:∵4bn+1<bn,
∴bn+1<$\frac{1}{4}$bn<$\frac{1}{{4}^{2}}$•bn-1<…<$\frac{1}{{4}^{n}}$•b1,
Tn≤b1(1+$\frac{1}{4}$+…+$\frac{1}{{4}^{n-1}}$)
=($\frac{1}{{2}^{2}-2}$•$\frac{1}{{2}^{2}-1}$)•$\frac{1-\frac{1}{{4}^{n}}}{1-\frac{1}{4}}$
=$\frac{1}{6}$•$\frac{4}{3}$(1-$\frac{1}{{4}^{n}}$)
<$\frac{2}{9}$.
点评 本题考查数列的通项及求和,考查运算求解能力,注意解题方法的积累,属于中档题.
A. | (-1,2) | B. | (-1,0)∪(1,2) | C. | (-∞,-1)∪(2,+∞) | D. | (-2,-1)∪(0,2) |