题目内容
11.已知等差数列{an}中,a1=5,7a2=4a4,数列{bn}前n项和为Sn,且Sn=2(bn-1)(n∈N*)(Ⅰ)求数列{an}和{bn}的通项公式
(Ⅱ)设数列cn=$\left\{\begin{array}{l}{{a}_{n},n为奇数}\\{{b}_{n},n为偶数}\end{array}\right.$,求{cn}的前n项和Tn.
分析 (Ⅰ)设等差数列{an}的公差为d,运用等差数列的通项公式可得d=3,再由数列通项和求和的关系,可得{bn}的通项公式;
(Ⅱ)讨论当n为偶数时,当n为奇数时,运用等差数列和等比数列的求和公式,计算即可得到.
解答 解:(Ⅰ)设等差数列{an}的公差为d,
则7a2=4a4,即有7(5+d)=4(5+3d),
解得d=3,
则an=5+3(n-1)=3n+2;
由n=1时,S1=2(b1-1)=b1,
解得b1=2,
Sn=2(bn-1)①
Sn-1=2(bn-1-1)②
①-②可得,bn=2bn-2bn-1,
即为bn=2bn-1,
bn=2•2n-1=2n;
(Ⅱ)设数列cn=$\left\{\begin{array}{l}{{a}_{n},n为奇数}\\{{b}_{n},n为偶数}\end{array}\right.$
=$\left\{\begin{array}{l}{3n+2,n为奇数}\\{{2}^{n},n为偶数}\end{array}\right.$,
当n为偶数时,Tn=(5+11+…+3n-1)+(4+16+…+2n)
=5•$\frac{n}{2}$+$\frac{1}{2}$•$\frac{n}{2}$($\frac{n}{2}$-1)•6+$\frac{4(1-{4}^{\frac{n}{2}})}{1-4}$
=$\frac{3}{4}$n2+n+$\frac{{2}^{n+2}}{3}$-$\frac{4}{3}$;
当n为奇数时,Tn=Tn-1+3n+2
=$\frac{3}{4}$(n-1)2+n-1+$\frac{{2}^{n+1}}{3}$-$\frac{4}{3}$+3n+2
=$\frac{3}{4}$n2+$\frac{5}{2}$n+$\frac{5}{12}$+$\frac{{2}^{n+1}}{3}$.
点评 本题考查等差数列和等比数列的通项和求和公式,考查运算能力,属于中档题.