题目内容
【题目】已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离为 ,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程;
(2)当点P(x0 , y0)为直线l上的定点时,求直线AB的方程;
(3)当点P在直线l上移动时,求|AF||BF|的最小值.
【答案】
(1)解:焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离 ,解得c=1,
所以抛物线C的方程为x2=4y.
(2)解:设 , ,
由(1)得抛物线C的方程为 , ,所以切线PA,PB的斜率分别为 , ,
所以PA: ①PB: ②
联立①②可得点P的坐标为 ,即 , ,
又因为切线PA的斜率为 ,整理得 ,
直线AB的斜率 ,
所以直线AB的方程为 ,
整理得 ,即 ,
因为点P(x0,y0)为直线l:x﹣y﹣2=0上的点,所以x0﹣y0﹣2=0,即y0=x0﹣2,
所以直线AB的方程为x0x﹣2y﹣2y0=0.
(3)解:根据抛物线的定义,有 , ,
所以 = ,
由(2)得x1+x2=2x0,x1x2=4y0,x0=y0+2,
所以 = .
所以当 时,|AF||BF|的最小值为
【解析】(1)利用焦点到直线l:x﹣y﹣2=0的距离建立关于变量c的方程,即可解得c,从而得出抛物线C的方程;(2)先设 , ,由(1)得到抛物线C的方程求导数,得到切线PA,PB的斜率,最后利用直线AB的斜率的不同表示形式,即可得出直线AB的方程;(3)根据抛物线的定义,有 , ,从而表示出|AF||BF|,再由(2)得x1+x2=2x0 , x1x2=4y0 , x0=y0+2,将它表示成关于y0的二次函数的形式,从而即可求出|AF||BF|的最小值.
【题目】某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下的列联表:
喜欢该项运动 | 不喜欢该项运动 | 总计 | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由公式,算得
附表:
0.025 | 0.01 | 0.005 | |
5.024 | 6.635 | 7.879 |
参照附表,以下结论正确的是( )
A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B. 在犯错语的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
C. 有99%以上的把握认为“爱好该项运动与性别无关”
D. 有99%以上的把握认为“爱好该项运动与性别有关”
【题目】对某种书籍每册的成本费(元)与印刷册数(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.
4.83 | 4.22 | 0.3775 | 60.17 | 0.60 | -39.38 | 4.8 |
表中,.
为了预测印刷20千册时每册的成本费,建立了两个回归模型:,.
(1)根据散点图,你认为选择哪个模型预测更可靠?(只选出模型即可)
(2)根据所给数据和(1)中选择的模型,求关于的回归方程,并预测印刷20千册时每册的成本费.
附:对于一组数据,,…,,其回归方程的斜率和截距的最小二乘估计公式分别为:,.
【题目】某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示:
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
数学成绩 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
物理成绩 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
若数学成绩90分(含90分)以上为优秀,物理成绩85(含85分)以上为优秀,则有多少把握认为学生的数学成绩与物理成绩有关系( )
A. 95% B. 97.5% C. 99.5% D. 99.9%