题目内容
【题目】如图,在四棱锥中,PA⊥平面ABCD,CD⊥AD,BC∥AD,.
(Ⅰ)求证:CD⊥PD;
(Ⅱ)求证:BD⊥平面PAB;
(Ⅲ)在棱PD上是否存在点M,使CM∥平面PAB,若存在,确定点M的位置,若不存在,请说明理由.
【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)在棱PD上存在点M,使CM∥平面PAB,且M是PD的中点.
【解析】
(Ⅰ)由题意可得CD⊥平面PAD,从而易得CD⊥PD;
(Ⅱ)要证BD⊥平面PAB,关键是证明;
(Ⅲ)在棱PD上存在点M,使CM∥平面PAB,且M是PD的中点.
(Ⅰ)证明:因为PA⊥平面ABCD,平面ABCD
所以CD⊥PA.
因为CD⊥AD,,
所以CD⊥平面PAD.
因为平面PAD,
所以CD⊥PD.
(II)因为PA⊥平面ABCD,平面ABCD
所以BD⊥PA.
在直角梯形ABCD中,,
由题意可得,
所以,
所以.
因为,
所以平面PAB.
(Ⅲ)解:在棱PD上存在点M,使CM∥平面PAB,且M是PD的中点.
证明:取PA的中点N,连接MN,BN,
因为M是PD的中点,所以.
因为,所以.
所以MNBC是平行四边形,
所以CM∥BN.
因为平面PAB, 平面PAB.
所以平面PAB.
【题目】某公司制造两种电子设备:影片播放器和音乐播放器.在每天生产结束后,要对产品进行检测,故障的播放器会被移除进行修复. 下表显示各播放器每天制造的平均数量以及平均故障率.
商品类型 | 播放器每天平均产量 | 播放器每天平均故障率 |
影片播放器 | 3000 | 4% |
音乐播放器 | 9000 | 3% |
下面是关于公司每天生产量的叙述:
①每天生产的播放器有三分之一是影片播放器;
②在任何一批数量为100的影片播放器中,恰好有4个会是故障的;
③如果从每天生产的音乐播放器中随机选取一个进行检测,此产品需要进行修复的概率是0.03.
上面叙述正确的是___________.