题目内容
设无穷等差数列{an}的前n项和为Sn,求所有的无穷等差数列{an},使得对于一切正整数k都有![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_ST/0.png)
【答案】分析:先由k=1,k=2时,确定首项和公差,再验证每一组解是否符合题意,从而可以找到符合题意的数列
解答:解:若等差数列{an}满足![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/0.png)
则当k=1时,有s1=s13,∴a1=0或a1=1或a1=-1
当k=2时,有s8=s2 3,即![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/1.png)
(1)当a1=0时,代入上式得![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/2.png)
①当a1=0,d=0时,an=0,Sn=0
满足![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/3.png)
此时,数列{an}为:0,0,0…
②当
时,
,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/7.png)
∴不满足题意
③当
时,
,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/11.png)
∴不满足题意
(2)当a1=1时,代入上式得d=0或d=2或d=-8
①当a1=1,d=0时,an=1,Sn=n
满足![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/12.png)
此时,数列{an}为:1,1,1…
②当a1=1,d=2时,an=2n-1,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/13.png)
满足![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/14.png)
此时,数列{an}为:1,3,5…
③当a1=1,d=-8时,an=-8n+9,Sn=n(5-4n)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/15.png)
∴不满足题意
(3)当a1=-1时,代入上式得d=0或d=-2或d=8
①当a1=-1,d=0时,an=-1,Sn=-n
满足![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/16.png)
此时,数列{an}为:-1,-1,-1…
②当a1=-1,d=-2时,an=-2n+1,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/17.png)
满足![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/18.png)
此时,数列{an}为:-1,-3,-5…
③当a1=-1,d=8时,an=8n-9,Sn=n(4n-5)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/19.png)
∴不满足题意
∴满足题意的等差数列{an}有:
①0,0,0…
②1,1,1…
③1,3,5…
④-1,-1,-1…
⑤-1,-3,-5…
点评:本题考查等差数列通项公式和前n项和的计算,要注意分类讨论.属中档题
解答:解:若等差数列{an}满足
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/0.png)
则当k=1时,有s1=s13,∴a1=0或a1=1或a1=-1
当k=2时,有s8=s2 3,即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/1.png)
(1)当a1=0时,代入上式得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/2.png)
①当a1=0,d=0时,an=0,Sn=0
满足
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/3.png)
此时,数列{an}为:0,0,0…
②当
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/7.png)
∴不满足题意
③当
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/11.png)
∴不满足题意
(2)当a1=1时,代入上式得d=0或d=2或d=-8
①当a1=1,d=0时,an=1,Sn=n
满足
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/12.png)
此时,数列{an}为:1,1,1…
②当a1=1,d=2时,an=2n-1,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/13.png)
满足
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/14.png)
此时,数列{an}为:1,3,5…
③当a1=1,d=-8时,an=-8n+9,Sn=n(5-4n)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/15.png)
∴不满足题意
(3)当a1=-1时,代入上式得d=0或d=-2或d=8
①当a1=-1,d=0时,an=-1,Sn=-n
满足
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/16.png)
此时,数列{an}为:-1,-1,-1…
②当a1=-1,d=-2时,an=-2n+1,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/17.png)
满足
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/18.png)
此时,数列{an}为:-1,-3,-5…
③当a1=-1,d=8时,an=8n-9,Sn=n(4n-5)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230448911656090/SYS201311012304489116560013_DA/19.png)
∴不满足题意
∴满足题意的等差数列{an}有:
①0,0,0…
②1,1,1…
③1,3,5…
④-1,-1,-1…
⑤-1,-3,-5…
点评:本题考查等差数列通项公式和前n项和的计算,要注意分类讨论.属中档题
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目