题目内容

设无穷等差数列{an}的前n项和为Sn
(1)若数列首项为a1=
32
,公差d=1,求满足Sk2=(Sk2的正整数k的值;
(2)若Sn=n2,求通项an
(3)求所有无穷等差数列{an},使得对于一切正整数k都有Sk2=(Sk2成立.
分析:(1)利用等差数列的求和公式表示出前n项的和,代入到 Sk2=(Sk)2求得k.
(2)利用n≥2时an=sn-sn-1求通项公式,但注意n=1时,也符合上式,即可求出通项公式.
(3)设数列{an}的公差为d,在 Sn2=(Sn)2中分别取k=1,2求得a1,代入到前n项的和中分别求得d,进而对a1和d进行验证,最后综合求得答案.
解答:解:(1)当 a1=
3
2
,d=1
时,Sn=na1+
n(n-1)
2
d=
3
2
n+
n(n-1)
2
=
1
2
n2+n

1
2
k4+k2=(
1
2
k2+k) 
2

整理得k3(
1
4
k-1)=0

∴k=0或k=4
又∵k≠0,
∴k=4.
(2)当n=1时,s1=a1=1
当n≥2时,an=sn-sn-1=2n-1
a1也符合上式
∴an=2n-1
(3)设数列{an}的公差为d,则在 Sn2=(Sn)2中分别取k=1,2,由(1)得a1=0或a1=1.
当a1=0时,代入(2)得d=0或d=6,
若a1=0,d=0,则an=0,Sn=0,从而Sk=(Sk2成立
若a1=0,d=6,则an=6(n-1),由S3=18,(S32=324,Sn=216知s9≠(S32,故所得数列不符合题意.
当a1=1时,代入(2)得4+6d=(2+d)2,解得d=0或d=2
若a1=1,d=0,则an=1,Sn=n,从而 Sk2=(Sk)2成立;
若a1=1,d=2,则an=2n-1,Sn=1+3+…+(2n-1)=n2,从而S=(Sn2成立
综上,共有3个满足条件的无穷等差数列:
∴an=0,an=1,an=2n-1.
点评:本题主要考查了等差数列的通项公式和求和公式的应用.考查了学生综合分析问题,归纳推理,创造性思维的能力.属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网