题目内容
(本小题满分13分)在平面直角坐标系中,已知椭圆:()的左焦点为,且点在上.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线的斜率为2且经过椭圆的左焦点.求直线与该椭圆相交的弦长。
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线的斜率为2且经过椭圆的左焦点.求直线与该椭圆相交的弦长。
(Ⅰ).(Ⅱ)==。
试题分析:(1)根据椭圆的性质可知焦点坐标得到c的值,然后结合点在椭圆上得到a,b的关系式,进而求解椭圆方程。(2)根据题意设出直线方程,那么与椭圆联立方程组,结合韦达定理得到弦长公式。
(Ⅰ)因为椭圆的左焦点为,所以,
点代入椭圆,得,即,
所以,所以椭圆的方程为.
(Ⅱ)直线的方程为,
,消去并整理得,,
==,
点评:解决该试题的关键是能够熟练的利用a,b,c的关系式,求解椭圆的方程,以及能运用设而不求的思想,设点,接和韦达定理表示出弦长公式。
练习册系列答案
相关题目