搜索
题目内容
等差数列
的前
项和记为
,若
,
,则
的最大值为
.
试题答案
相关练习册答案
16
试题分析:
等差数列
的前
项和为
,
,
,即
,
,
,
,解得
,
.
练习册系列答案
名校压轴题系列答案
名师点拨课课通教材全解析系列答案
春雨教育解题高手系列答案
中考挑战满分真题汇编系列答案
中辰传媒期末金考卷系列答案
激活中考17地市中考试题汇编系列答案
实验班语文同步提优阅读与训练系列答案
轻松课堂单元期中期末专题冲刺100分系列答案
正大图书中考试题汇编系列答案
名师面对面中考系列答案
相关题目
设数列
的各项均为正数,其前n项的和为
,对于任意正整数m,n,
恒成立.
(Ⅰ)若
=1,求
及数列
的通项公式;
(Ⅱ)若
,求证:数列
是等比数列.
若无穷数列
满足:①对任意
,
;②存在常数
,对任意
,
,则称数列
为“
数列”.
(Ⅰ)若数列
的通项为
,证明:数列
为“
数列”;
(Ⅱ)若数列
的各项均为正整数,且数列
为“
数列”,证明:对任意
,
;
(Ⅲ)若数列
的各项均为正整数,且数列
为“
数列”,证明:存在
,数列
为等差数列.
设数列
是公比为正数的等比数列,
,
.
(1)求数列
的通项公式;
(2)设数列
是首项为
,公差为
的等差数列,求数列
的前
项和
.
数列
是递增的等差数列,且
,
.
(1)求数列
的通项公式;
(2)求数列
的前
项和
的最小值;
(3)求数列
的前
项和
.
已知数列
的前
项和
满足
(Ⅰ)证明
为等比数列,并求
的通项公式;
(Ⅱ)设
;求数列
的前
项和
.
设
为等差数列
的前
项和,若
,则正整数
=
.
定义:
表示
中的最小值.若定义
,对于任意的
,均有
成立,则常数
的取值范围是
.
等差数列
中,已知
,
,则
的取值范围是
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总