题目内容
【题目】如果函数满足且是它的零点,则函数是“有趣的”,例如就是“有趣的”,已知是“有趣的”.
(1)求出b、c并求出函数的单调区间;
(2)若对于任意正数x,都有恒成立,求参数k的取值范围.
【答案】(1),,单减区间为0,1),单增区间为;(2)
【解析】
(1)根据定义得方程恒成立,解得b、c,再根据复合函数单调性确定函数的单调区间;
(2)先化简不等式,再求导数,根据导函数符号分类讨论,利用导数证明恒成立,再说明不恒成立.
(1)因为是“有趣的”,所以
即
的定义域为,单减区间为(0,1),单增区间为.
(2)参数的取值范围为.
引理:不等式对任意正数y都成立。证明如下:
由恒成立,得恒成立。.
我们构造函数。注意到。
构造,注意到,且
我们以下分两部分进行说明:
第一部分:时,恒成立。
时,由引理得:,知道,
从而当时有,时有,所以在(0,1)上为负,在上为正。
从而在上单减,在上单增,最小值为。
从而
第二部分:时,不满足条件。
构造函数。
(ⅰ)若,则对于任意,都有。
(ⅱ)若,则对于任意,,
而,所以在(0,1)上有唯一零点,同时在,时都有。
于是只要,无论是(ⅰ)还是(ⅱ),我们总能找到一个实数,在时都有。
这样在时,都有,结合,所以时,从而在时有。,所以时,不满足要求。
【题目】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:
消费次第 | 第次 | 第次 | 第次 | 第次 | 次 |
收费比率 |
该公司注册的会员中没有消费超过次的,从注册的会员中,随机抽取了100位进行统计,得到统计数据如下:
消费次数 | 次 | 次 | 次 | 次 | 次 |
人数 |
假设汽车美容一次,公司成本为元,根据所给数据,解答下列问题:
(1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(2)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为元,求的分布列和数学期望.