题目内容
【题目】对于正整数集合,如果任意去掉其中一个元素之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合为“可分集合”.
(1)判断集合和是否是“可分集合”(不必写过程);
(2)求证:五个元素的集合一定不是“可分集合”;
(3)若集合是“可分集合”.
①证明:为奇数;
②求集合中元素个数的最小值.
【答案】(1)集合不是“可分集合”,集合是“可分集合”;(2)见解析;(3)①见解析;②最小值是7
【解析】
(1)根据定义直接判断即可得到结论;
(2)不妨设,若去掉的元素为,则有①,或者②;若去掉的元素为,则有③,或者④,求解四个式子可得出矛盾,从而证明结论;
(3)①设集合所有元素之和为,由题可知,均为偶数,因此均为奇数或偶数.分类讨论为奇数和为偶数的情况,分析可得集合中元素个数为奇数;②结合(1)(2)问,依次验证当时,当时,当时集合是否为“可分集合”,从而证明结论.
(1)集合不是“可分集合”,集合是“可分集合”;
(2)不妨设,
若去掉的元素为,将集合分成两个交集为空集的子集,且两个子集元素之和相等,则有①,或者②;
若去掉的元素为,将集合分成两个交集为空集的子集,且两个子集元素之和相等,则有③,或者④.
由①、③,得,矛盾;由①、④,得,矛盾;
由②、③,得,矛盾;由②、④,得,矛盾.
因此当时,集合一定不是“可分集合”;
(3)①设集合所有元素之和为.
由题可知,均为偶数,因此均为奇数或偶数.
如果为奇数,则也均为奇数,由于,所以为奇数.
如果为偶数,则均为偶数,此时设,则也是“可分集合”. 重复上述操作有限次,便可得各项均为奇数的“可分集合”. 此时各项之和也为奇数,则集合中元素个数为奇数.
综上所述,集合中元素个数为奇数.
②当时,显然任意集合不是“可分集合”.
当时,第(2)问已经证明集合不是“可分集合”.
当时,集合,因为:
3+5+7+9=11+13,1+9+13=5+7+11,9+13=1+3+7+11,1+3+5+11=7+13,
1+9+11=3+5+13,3+7+9=1+5+13,1+3+5+9=7+11,
则集合是“可分集合”.
所以集合中元素个数的最小值是7.