题目内容
【题目】已知△ABC的角A、B、C所对的边分别是a、b、c,设向量 , , .
(1)若 ∥ ,求证:△ABC为等腰三角形;
(2)若 ⊥ ,边长c=2,角C= ,求△ABC的面积.
【答案】
(1)证明:∵m∥n
∴asinA=bsinB
即a =b .其中R为△ABC外接圆半径.
∴a=b
∴△ABC为等腰三角形
(2)证明:由题意,mp=0
∴a(b﹣2)+b(a﹣2)=0
∴a+b=ab
由余弦定理4=a2+b2﹣2abcos
∴4=a2+b2﹣ab=(a+b)2﹣3ab
∴(ab)2﹣3ab﹣4=0
∴ab=4或ab=﹣1(舍去)
∴S△ABC= absinC
= ×4×sin =
【解析】(1)利用向量平行的条件,写出向量平行坐标形式的条件,得到关于三角形的边和角之间的关系,利用余弦定理变形得到三角形是等腰三角形.(2)利用向量垂直数量积为零,写出三角形边之间的关系,结合余弦定理得到求三角形面积所需的两边的乘积的值,求出三角形的面积.
练习册系列答案
相关题目
【题目】为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有800名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩进行统计. 请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:
分组 | 频数 | 频率 |
50.5~60.5 | 6 | 0.08 |
60.5~70.5 | 0.16 | |
70.5~80.5 | 15 | |
80.5~90.5 | 24 | 0.32 |
90.5~100.5 | ||
合计 | 75 | 1.00 |
(1)填充频率分布表的空格;
(2)补全频率分布直方图;
(3)根据频率分布直方图求此次“环保知识竞赛”的平均分为多少?