题目内容
7.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+2}&{(x≤0)}\\{lo{g}_{\frac{1}{2}}(x+1)}&{(x>0)}\end{array}\right.$,若f(f(a))≤2,则实数a的取值范围是(-∞,1).分析 利用分段函数通过讨论f(a)≤0,f(a)<0,分别求解a的范围即可.
解答 解:由题意可知,当f(a)≤0时,f2(a)+f(a)+2≤2,解得-1≤f(a)≤0,函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+2}&{(x≤0)}\\{lo{g}_{\frac{1}{2}}(x+1)}&{(x>0)}\end{array}\right.$,
所以$\left\{\begin{array}{l}a≤0\\-1≤{a}^{2}+a+2≤0\end{array}\right.$无解.或$\left\{\begin{array}{l}a>0&\\-1≤lo{g}_{\frac{1}{2}}(a+1)&≤0\end{array}\right.$,解得0<a<1;
当f(a)>0时,$lo{g}_{\frac{1}{2}}(f(a)+1)$≤2,解得-$\frac{3}{4}$≤f(a),函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+2}&{(x≤0)}\\{lo{g}_{\frac{1}{2}}(x+1)}&{(x>0)}\end{array}\right.$,
所以$\left\{\begin{array}{l}a≤0\\-\frac{3}{4}≤{a}^{2}+a+2\end{array}\right.$,解得a≤0.或$\left\{\begin{array}{l}a>0&\\-\frac{3}{4}≤lo{g}_{\frac{1}{2}}(a+1)&\end{array}\right.$,解得0<a<$\root{4}{8}$-1;
综上a<1.
故答案为:(-∞,1).
点评 本题考查分段函数的应用,考查分类讨论以及对数不等式的解法,考查计算能力.
A. | ab>AG | B. | ab≤AG | C. | ab≥AG | D. | ab<AG |