题目内容

【题目】如图,在三棱锥中,为线段的中点是线段上一动点

(1)时,求证:

(2)的面积最小时,求三棱锥的体积

【答案】(1)见解析;(2).

【解析】

分析:(1)先利用勾股定理得到线线垂直,利用“同一平面内与一条直线垂直的直线平行”得到线线平行,再利用线面平行的判定定理进行证明;(2)先利用等腰三角形的“三线合一”得到线线垂直,利用线面垂直的判定定理和性质定理得到面面垂直和线线垂直,进而确定为直角三角形,确定何时取得最小值,再利用三棱锥的体积公式进行求解.

详解:(1)直角中,

中,由

,又,∴.

(2)等腰直角中,由中点知,

又由

,∴

,∴

为直角三角形,

最小时,的面积最小,

过点的垂线时,当为垂足时,最小为

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网