题目内容
【题目】某工厂为了提高生产效率,对生产设备进行了技术改造,为了对比技术改造后的效果,采集了技术改造前后各20次连续正常运行的时间长度(单位:天)数据,整理如下:
改造前:19,31,22,26,34,15,22,25,40,35,18,16,28,23,34,15,26,20,24,21
改造后:32,29,41,18,26,33,42,34,37,39,33,22,42,35,43,27,41,37,38,36
(1)完成下面的列联表,并判断能否有99%的把握认为技术改造前后的连续正常运行时间有差异?
超过30 | 不超过30 | |
改造前 | ||
改造后 |
(2)工厂的生产设备的运行需要进行维护,工厂对生产设备的生产维护费用包括正常维护费,保障维护费两种.对生产设备设定维护周期为T天(即从开工运行到第kT天,k∈N*)进行维护.生产设备在一个生产周期内设置几个维护周期,每个维护周期相互独立.在一个维护周期内,若生产设备能连续运行,则只产生一次正常维护费,而不会产生保障维护费;若生产设备不能连续运行,则除产生一次正常维护费外,还产生保障维护费.经测算,正常维护费为0.5万元/次;保障维护费第一次为0.2万元/周期,此后每增加一次则保障维护费增加0.2万元.现制定生产设备一个生产周期(以120天计)内的维护方案:T=30,k=1,2,3,4.以生产设备在技术改造后一个维护周期内能连续正常运行的频率作为概率,求一个生产周期内生产维护费的分布列及均值.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
【答案】(1)见解析,有99%的把握认为技术改造前后的连续正常运行时间有差异.(2)见解析;均值为2.275万元.
【解析】
(1)根据已知改造前后数据完成列联表,计算,查表与临界值比较大小即可确定;
(2)依题意可知,一个维护周期内,生产线需保障维护的概率为,一个生产周期内需保障维护的次数服从二项分布.计算出一个生产周期内的正常维护费和保障维护费即可得出一个生产周期内的生产维护费,根据二项分布概率公式可求出分布列及期望.
解:(1)列联表为:
超过30 | 不超过30 | |
改造前 | 5 | 15 |
改造后 | 15 | 5 |
有99%的把握认为技术改造前后的连续正常运行时间有差异.
(2)由题知,生产周期内有4个维护周期,一个维护周期为30天,一个维护周期内,生产线需保障维护的概率为.
设一个生产周期内需保障维护的次数为,则;一个生产周期内的正常维护费为万元,保障维护费为万元.
一个生产周期内需保障维护次时的生产维护费为万元.
设一个生产周期内的生产维护费为X,则X的所有可能取值为2,2.2,2.6,3.2,4.
所以,的分布列为
2 | 2.2 | 2.6 | 3.2 | 4 | |
一个生产周期内生产维护费的均值为2.275万元.