题目内容
已知圆C的方程为
,点A
,直线
:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832298534.png)
(1)求与圆C相切,且与直线
垂直的直线方程;
(2)O为坐标原点,在直线OA上是否存在异于A点的B点,使得
为常数,若存在,求出点B,不存在说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832235589.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832266490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832282277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832298534.png)
(1)求与圆C相切,且与直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832282277.png)
(2)O为坐标原点,在直线OA上是否存在异于A点的B点,使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832344500.png)
(1)
:
;(2)存在点B
对于圆上任意一点P都有
为常数![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832500393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832282277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832376700.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832407600.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832344500.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832500393.png)
(1)因为所求直线与l垂直,所以可设l:
,然后再根据直线l与圆C相切,圆心C到直线l的距离等于等于圆的半径3,可建立关于b的方程,求出b的值.
(2)假设存在这样的点B
,使得
为常数
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832703690.png)
即
再根据
,
可转化为
对任意
恒成立问题来解决即可.
解:(1)
:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832376700.png)
(2)假设存在这样的点B
,使得
为常数
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832703690.png)
即
……①,又
……②
由①②可得
对任意
恒成立
所以
解得
或
(舍去)
所以存在点B
对于圆上任意一点P都有
为常数![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832500393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832563577.png)
(2)假设存在这样的点B
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832594459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832344500.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832625321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832703690.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328327191021.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832734566.png)
可转化为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328328281125.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832859537.png)
解:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832282277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832376700.png)
(2)假设存在这样的点B
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832594459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832344500.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832625321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832703690.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328327191021.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832734566.png)
由①②可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328328281125.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832859537.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328332961188.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232833327725.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232833343553.png)
所以存在点B
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832407600.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832344500.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232832500393.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目