题目内容
若直线被圆截得的弦长为4,
则的最小值是 .
则的最小值是 .
9
解:由x2+y2+2x-4y+1=0得:(x+1)2+(y-2)2=4,
∴该圆的圆心为O(-1,2),半径r=2;
又直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,
∴直线2ax-by+2=0(a>0,b>0)经过圆心O(-1,2),
∴-2a-2b+2=0,即a+b=1,又a>0,b>0,
=(a+b)=5+9
∴该圆的圆心为O(-1,2),半径r=2;
又直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,
∴直线2ax-by+2=0(a>0,b>0)经过圆心O(-1,2),
∴-2a-2b+2=0,即a+b=1,又a>0,b>0,
=(a+b)=5+9
练习册系列答案
相关题目