题目内容
14.已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1 (n≥3);(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=nan,求数列{bn}的前n项和Tn.
分析 (Ⅰ)通过Sn+Sn-2=2Sn-1+2n-1 (n≥3)变形可得an=an-1+2n-1(n≥3),利用an=an-an-1+an-1-an-2+…+a3-a2+a2计算即可;
(Ⅱ)通过bn=n•2n+n可得Tn=(2+2×22+3×23+…+n•2n)+(1+2+3+…+n),令T=2+2×22+3×23+…+n•2n,利用错位相减法可求出T,再计算1+2+3+…+n,
计算即可.
解答 解:(Ⅰ)∵Sn+Sn-2=2Sn-1+2n-1 (n≥3),
∴Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),
即an=an-1+2n-1(n≥3),
∴an=an-an-1+an-1-an-2+…+a3-a2+a2
=2n-1+2n-2+…+22+2+1+2
=2n+1(n≥3),
检验知n=1、2时,结论也成立,
∴an=2n+1;
(Ⅱ)∵bn=nan=n•2n+n,
∴Tn=b1+b2+b3+…+bn=(2+2×22+3×23+…+n•2n)+(1+2+3+…+n),
令T=2+2×22+3×23+…+n•2n,
则2T=22+2×23+3×24+…+n•2n+1,
两式相减,得-T=2+22+23+…+2n-n•2n+1=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1,
∴T=2(1-2n)+n•2n+1=2+(n-1)•2n+1,
∵1+2+3+…+n=$\frac{n(n+1)}{2}$,
∴Tn=(n-1)•2n+1+$\frac{{n}^{2}+n+4}{2}$.
点评 本题考查求数列的通项、前n项和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
2.设等比数列{an}的前n项和为Sn,若a1=1,a4=-8,则S5等于( )
A. | -11 | B. | 11 | C. | 31 | D. | -31 |
9.已知函数f (x)=x2+mx+2n的两个零点分别为x1和x2,若x1和x2分别在区间(0,1)与(1,2)内,则$\frac{n-2}{m-1}$的取值范围是( )
A. | ($\frac{1}{4}$,1) | B. | [$\frac{1}{4}$,1] | C. | (-∞,$\frac{1}{4}$)∪(1,+∞) | D. | (-∞,$\frac{1}{4}$]∪ |
19.“sin2θ<0”是“tanθ<0”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
3.甲、乙两位同学在5次考试中的数学成绩用茎叶图表示如图,中间一列的数字表示数学成绩的十位数字,两边的数字表示数学成绩的个位数字.若甲、乙两人的平均成绩分别是$\overline{{x}_{甲}}$、$\overline{{x}_{乙}}$,则下列说法正确的是( )
A. | $\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,甲比乙成绩稳定 | B. | $\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,乙比甲成绩稳定 | ||
C. | $\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,甲比乙成绩稳定 | D. | $\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,乙比甲成绩稳定 |