题目内容

6.如果不等式$\frac{x-a}{{x}^{2}+x+1}$>$\frac{x-b}{{x}^{2}-x+1}$的解集为($\frac{1}{2}$,1),则a•b=8.

分析 根据不等式和方程之间的关系建立方程即可.

解答 解:∵不等式$\frac{x-a}{{x}^{2}+x+1}$>$\frac{x-b}{{x}^{2}-x+1}$的解集为($\frac{1}{2}$,1),
∴x=$\frac{1}{2}$,1是方程$\frac{x-a}{{x}^{2}+x+1}$=$\frac{x-b}{{x}^{2}-x+1}$的两个根,
则$\left\{\begin{array}{l}{\frac{1-a}{1+1+1}=\frac{1-b}{1-1+1}}\\{\frac{\frac{1}{2}-a}{\frac{1}{4}+\frac{1}{2}+1}=\frac{\frac{1}{2}-b}{\frac{1}{4}-\frac{1}{2}+1}}\end{array}\right.$,
即$\left\{\begin{array}{l}{\frac{1-a}{3}=1-b}\\{\frac{1-2a}{7}=\frac{1-2b}{3}}\end{array}\right.$,解得a=4,b=2,
则ab=2×4=8,
故答案为:8.

点评 本题主要考查不等式的应用,根据不等式的解和方程根之间的关系是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网