题目内容

设f(x)=(ax+b)sinx+(cx+d)cosx,若已知f′(x)=xcosx,则f(x)=(    )
A.xsinx
B.xsinx-xcosx
C.xsinx+cosx
D.xcosx
C
∵f′(x)=[(ax+b)sinx]′+[(cx+d)cosx]′
=(ax+b)′sinx+(ax+b)(sinx)′+(cx+d)′cosx+(cx+d)(cosx)′
=asinx+(ax+b)cosx+ccosx-(cx+d)sinx
=(a-d-cx)sinx+(ax+b+c)cosx.
为使f′(x)=xcosx,应满足
解方程组,得
从而可知,f(x)=xsinx+cosx.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网