题目内容
设f(x)=(ax+b)sinx+(cx+d)cosx,若已知f′(x)=xcosx,则f(x)=( )
A.xsinx |
B.xsinx-xcosx |
C.xsinx+cosx |
D.xcosx |
C
∵f′(x)=[(ax+b)sinx]′+[(cx+d)cosx]′
=(ax+b)′sinx+(ax+b)(sinx)′+(cx+d)′cosx+(cx+d)(cosx)′
=asinx+(ax+b)cosx+ccosx-(cx+d)sinx
=(a-d-cx)sinx+(ax+b+c)cosx.
为使f′(x)=xcosx,应满足
解方程组,得
从而可知,f(x)=xsinx+cosx.
=(ax+b)′sinx+(ax+b)(sinx)′+(cx+d)′cosx+(cx+d)(cosx)′
=asinx+(ax+b)cosx+ccosx-(cx+d)sinx
=(a-d-cx)sinx+(ax+b+c)cosx.
为使f′(x)=xcosx,应满足
解方程组,得
从而可知,f(x)=xsinx+cosx.
练习册系列答案
相关题目