题目内容
已知圆C与y轴相切,圆心在直线x-3y=0上,且在直线y=x上截得的弦长2 .求 圆C的方程.
解析
(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,曲线的参数方程是是参数).(1)写出曲线的直角坐标方程和曲线的普通方程;(2)求的取值范围,使得,没有公共点.
(本题满分12分) 已知圆的圆心在轴上,半径为1,直线,被圆所截的弦长为,且圆心在直线的下方.(I)求圆的方程;(II)设,若圆是的内切圆,求△的面积的最大值和最小值.
(本题满分10分)已知圆C过点(4,-1),且与直线相切于点.(Ⅰ)求圆C的方程;(II)是否存在斜率为1的直线l,使得l被圆C截得弦AB,以AB为直径的圆经过原点,若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分12分).已知圆与直线相切。(1)求以圆O与y轴的交点为顶点,直线在x轴上的截距为半长轴长的椭圆C方程;(2)已知点A,若直线与椭圆C有两个不同的交点E,F,且直线AE的斜率与直线AF的斜率互为相反数;问直线的斜率是否为定值?若是求出这个定值;若不是,请说明理由.
(本小题满分12分)光线l过点P(1,-1),经y轴反射后与圆C:(x-4)2+(y-4)2=1相切,求光线l所在的直线方程.
设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,又满足·=0.(1)求m的值;(2)求直线PQ的方程.
双曲线的虚轴长等于( )
已知,圆C:,直线:.(1) 当a为何值时,直线与圆C相切;(2) 当直线与圆C相交于A、B两点,且时,求直线的方程.