题目内容

7.已知数列{an}的前n和Sn=$\frac{3}{2}$n2+$\frac{5}{2}$n,数列{bn}的通项公式bn=5n+2.
(1)求数列{an}的通项公式;
(2)设cn=$\frac{1}{{a}_{n}{b}_{n}}$,求证:$\sum_{i=1}^{n}$ci<$\frac{2}{25}$.

分析 (1)运用递推关系式得出当n>1时,an=Sn-Sn-1,验证n=1,
(2)求解Cn=$\frac{1}{(3n+1)(5n+2)}$,放缩得出<$\frac{3}{5}$×$\frac{1}{(3n+1)^{2}-(\frac{3}{2})^{2}}$=$\frac{1}{5}$($\frac{1}{3n-\frac{1}{2}}$$-\frac{1}{3n+\frac{5}{2}}$)求解即可.

解答 解:(1)当n=1时,a1=S1=$\frac{3}{2}$×12$+\frac{5}{2}$×1=4,
当n>1时,an=Sn-Sn-1=$\frac{3}{2}$n2+$\frac{5}{2}$n-$\frac{3}{2}$(n-1)2+$\frac{5}{2}$(n-1)=3n+1,
∵当n=1时,3×1+1=4,
∴an=3n+1
(2)∵Cn=$\frac{1}{(3n+1)(5n+2)}$=$\frac{3}{5}$×$\frac{1}{(3n+1)^{2}}$<$\frac{3}{5}$×$\frac{1}{(3n+1)^{2}-(\frac{3}{2})^{2}}$=$\frac{1}{5}$($\frac{1}{3n-\frac{1}{2}}$$-\frac{1}{3n+\frac{5}{2}}$)
∴$\sum_{i=1}^{n}$ci<$\frac{1}{5}$($\frac{1}{\frac{5}{2}}$$-\frac{1}{\frac{11}{2}}$+$\frac{1}{\frac{11}{2}}$$-\frac{1}{\frac{17}{2}}$+…+$\frac{1}{3n-\frac{1}{2}}$$-\frac{1}{3n+\frac{5}{2}}$)=$\frac{1}{5}$($\frac{2}{5}$$-\frac{1}{3n+\frac{5}{2}}$)$<\frac{1}{5}$×$\frac{2}{5}$=$\frac{2}{25}$.

点评 本题考查了数列的递推关系式的运用,放缩,裂项求解证明不等式即可,难度较大,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网