题目内容

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,称圆心在原点O、半径是
a2+b2
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
2
,0)
,其短轴的一个端点到点F的距离为
3

(1)求椭圆C和其“准圆”的方程;
(2)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求
AB
AD
的取值范围;
(3)在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.
(1)由题意可得:a=
3
c=
2
,b=1,∴r=
(
3
)2+12
=2.
∴椭圆C的方程为
x2
3
+y2=1
,其“准圆”的方程为x2+y2=4;
(2)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取点A(2,0).
设点B(x0,y0),则D(x0,-y0).
AB
AD
=(x0-2,y0)•(x0-2,-y0)=(x0-2)2-y02
∵点B在椭圆
x2
3
+y2=1
上,∴
x02
3
+y02=1
,∴y02=1-
x02
3

AD
AB
=(x0-2)2-1+
x02
3
=
4
3
(x0-
3
2
)2

精英家教网

-
3
x0
3
,∴0≤
4
3
(x0-
3
2
)2<7+4
3

0≤
AD
AB
<7+4
3
,即
AD
AB
的取值范围为[0,7+4
3
)

(3)①当过准圆上点P的直线l与椭圆相切且其中一条直线的斜率为0而另一条斜率不存在时,则点P为
3
,±1)
,此时l1⊥l2
②当过准圆上的点P的直线l的斜率存在不为0且与椭圆相切时,设点P(x0,y0),直线l的方程为m(y-y0)=x-x0
联立
m(y-y0)=x-x0
x2
3
+y2=1
消去x得到关于y的一元二次方程:
(3+m2)y2+(2mx0-2m2y0)y+m2y02+x02-2mx0y0-3=0
△=(2mx0-2m2y0)2-4(3+m2)(m2y02+x02-2mx0y0-3)=0,
化为(y02-1)m2-2mx0y0+x02-3=0
y02-1≠0,m存在,∴m1m2=
x02-3
y02-1

∵点P在准圆上,∴x02+y02=4,∴x02-3=1-y02
∴m1m2═-1.
即直线l1,l2的斜率kl1kl2=-1,因此当过准圆上的点P的直线l的斜率存在不为0且与椭圆相切时,直线l1⊥l2
综上可知:在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,l1⊥l2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网