题目内容

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆m的“伴随圆”. 若椭圆C的一个焦点为F2(
2
,0)
,其短轴上的一个端点到F2距离为
3

(Ⅰ)求椭圆C及其“伴随圆”的方程;
(Ⅱ)若过点P(0,m)(m<0)的直线l与椭圆C只有一个公共点,且l截椭圆C的“伴随圆”所得的弦长为2
2
,求m的值;
(Ⅲ)过椭圆C“伴椭圆”上一动点Q作直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,试判断直线l1,l2的斜率之积是否为定值,并说明理由.
分析:(Ⅰ)直接根据条件求出a=
3
,半焦距c=
2
,得到椭圆方程,进而根据定义求出其“伴随圆”的方程;
(Ⅱ)先设出直线方程,与椭圆方程联立,根据直线l与椭圆C只有一个公共点得到k,m之间的关系;再结合l截椭圆C的“伴随圆”所得的弦长为2
2
,即可求m的值;
(Ⅲ)设出过点Q(x0,y0),与椭圆只有一个公共点的直线方程,联立直线方程与椭圆方程根据交点只有一个,得到关于k与点Q坐标之间的等式,最后再结合Q在伴椭圆上即可的出结论.
解答:解:(Ⅰ)由题意得:a=
3
,半焦距c=
2

则b=1椭圆C方程为
x2
3
+y2=1

“伴随圆”方程为x2+y2=4…(4分)
(Ⅱ)则设过点P且与椭圆有一个交点的直线l为:y=kx+m,
y=kx+m
x2
3
+y2=1
整理得(1+3k2)x2+6kmx+(3m2-3)=0
所以△=(6km)2-4(1+3k2)(3m2-3)=0,解3k2+1=m2①…(6分)
又因为直线l截椭圆C的“伴随圆”所得的弦长为2
2

则有2
22-(
|m|
k2+1
)
2
=2
2
化简得m2=2(k2+1)②…(8分)
联立①②解得,k2=1,m2=4,
所以k=±1,m=-2(∵m<0),则P(0,-2)…(10分)
(Ⅲ)当l1,l2都有斜率时,设点Q(x0,y0),其中x02+y02=4,
设经过点Q(x0,y0),与椭圆只有一个公共点的直线为y=k(x-x0)+y0
y=kx+(y0-kx0)
x2
3
+y2=1
,消去y得到x2+3[kx+(y0-kx0)]2-3=0…(12分)
即(1+3k2)x2+6k(y0-kx0)x+3(y0-kx02-3=0,
△=[6k(y0-kx0)]2-4•(1+3k2)[3(y0-kx02-3]=0,
经过化简得到:(3-x02)k2+2x0y0k+1-y02=0,…(14分)
因为x02+y02=4,所以有(3-x02)k2+2x0y0k+(x02-3)=0,
设l1,l2的斜率分别为k1,k2
因为l1,l2与椭圆都只有一个公共点,
所以k1,k2满足方程(3-x02)k2+2x0y0k+(x02-3)=0,
因而k1•k2=-1,即直线l1,l2的斜率之积是为定值-1…(16分)
点评:本题主要考查在新定义下圆与圆锥曲线的综合问题.解决新定义的题目,一定要理解定义,避免出错.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网