题目内容
已知函数
(1)判断函数在上的单调;
(2)若在上的值域是,求的值.
(1)运用定义法来证明函数单调性,作差,变形定号,下结论。
(2)
解析试题分析:解:(1)设则 2
6
,因此,函数是在上的单调增函数 .8
(2)在上的值域是,
又由(1)得在上是单调增函数, 3
5
即解得
考点:函数单调性
点评:主要是考查了函数单调性以及函数奇偶性的运用,属于基础题。
练习册系列答案
相关题目
有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响。
据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表:
所用的时间(天数) | 10 | 11 | 12 | 13 |
通过公路1的频数 | 20 | 40 | 20 | 20 |
通过公路2的频数 | 10 | 40 | 40 | 10 |
(1)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;
(2)若通过公路1、公路2的“一次性费用”分别为3.2万元、1.6万元(其它费用忽略不计),此项费用由生产商承担。如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到,每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天销售商将少支付给生产商2万元。如果汽车A、B长期按(1)所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大。
(注:毛利润=(销售商支付给生产商的费用)—(一次性费用))