题目内容
【题目】在数列中,,
(I)求,,的值,由此猜想数列的通项公式:
(Ⅱ)用数学归纳法证明你的猜想.
【答案】
【解析】
试题(1)数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学问题;(2)用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值是多少;(3)由时等式成立,推出时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程,由于“猜想”是“证明”的前提和“对象”,务必保证猜想的正确性,同时必须严格按照数学归纳法的步骤书写.
试题解析:解a1==,a2=,a3=,a4=,猜想an=,下面用数学归纳法证明:
①当n=1时,a1==,猜想成立.
②假设当n=k(k≥1,k∈N*)时猜想成立,即=.
则当n=k+1时,
===,
所以当n=k+1时猜想也成立,
由①②知,对n∈N*,an=都成立.
练习册系列答案
相关题目
【题目】为增强市民节能环保意识,某市面向全市征召义务宣传志愿者,现从符合条件的500名志愿者中随机抽取100名志愿者,他们的年龄情况如下表所示:
分组(单位:岁) | 频数 | 频率 |
5 | 0.05 | |
① | 0.20 | |
35 | ② | |
30 | 0.30 | |
10 | 0.10 | |
总计 | 100 | 1.00 |
(1)频率分布表中的①②位置应填什么数据?
(2)补全如图所示的频率分布直方图,再根据频率分布直方图估计这500名志愿者中年龄在岁的人数.