题目内容

2.如图所示,在侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB═$\sqrt{2}$,AD=2,BC=4,AA1=2,E,F分别是DD1,AA1的中点.
(I)证明:EF∥平面B1C1CB;
(Ⅱ)求BC1与平面B1C1F所成的角的正弦值.

分析 (Ⅰ)由已知得EF∥AD,AD∥BC,从而EF∥BC,由此能证明EF∥平面B1C1CB.
(Ⅱ)以B1A1,B1C1,B1B为x、y、z轴,建立空间直角坐标系,利用向量法能求出BC1与平面B1C1F所成的角的正弦值.

解答 证明:(Ⅰ)∵E,F分别是DD1,AA1的中点,∴EF∥AD,
又∵AD∥BC,∴EF∥BC,
∵EF?平面B1C1CB,BC?平面B1C1CB,
∴EF∥平面B1C1CB.
解:(Ⅱ)由已知得A1B1⊥B1C1,BB1⊥底面A1B1C1D1
以B1A1,B1C1,B1B为x、y、z轴,建立空间直角坐标系,
则${A}_{1}(\sqrt{2},0,0)$,C1(0,4,0),A($\sqrt{2},0,\sqrt{2}$),
B(0,0,2),F($\sqrt{2},0,1$),
∴$\overrightarrow{{B}_{1}{C}_{1}}$=(0,4,0),$\overrightarrow{B{C}_{1}}$=(0,4,-2),$\overrightarrow{{C}_{1}F}$=($\sqrt{2},-4,1$),
设$\overrightarrow{n}$=(x,y,z)是平面B1C1F的一个法向量,
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{B}_{1}{C}_{1}}=4y=0}\\{\overrightarrow{n}•\overrightarrow{{C}_{1}F}=\sqrt{2}x-4y+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,-$\sqrt{2}$),
设BC1与平面B1C1F所成的角为θ,
则sinθ=|$\overrightarrow{B{C}_{1}},\overrightarrow{n}$=|$\frac{\overrightarrow{{BC}_{1}}•\overrightarrow{n}}{|\overrightarrow{B{C}_{1}}|•|\overrightarrow{n}|}$|=|$\frac{2\sqrt{2}}{2\sqrt{5}•\sqrt{3}}$|=$\frac{\sqrt{30}}{15}$,
∴BC1与平面B1C1F所成的角的正弦值为$\frac{\sqrt{30}}{15}$.

点评 本题考查线面平行的证明,考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网