题目内容

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

【答案】12

【解析】

试题分析:(1)根据二倍角公式,三角形内角和,所以,整理为关于的二次方程,解得角的大小;(2)根据三角形的面积公式和上一问角,代入后解得边,这样就知道,然后根据余弦定理再求,最后根据证得定理分别求得.

试题解析:(1)由cos 2A3cos(BC)1

2cos2A3cos A20

(2cos A1)(cos A2)0

解得cos Acos A=-2(舍去)

因为0<A<π,所以A.

2)由Sbcsin Abc×bc5,得bc20,又b5,知c4.

由余弦定理得a2b2c22bccos A25162021,故a.

从而由正弦定理得sin B sin Csin A×sin Asin2A×.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网