题目内容
【题目】已知函数f(x)=xlnx,且0<x1<x2 , 给出下列命题: ① <1
②x2f(x1)<x1f(x2)
③当lnx>﹣1时,x1f(x1)+x2f(x2)>2x2f(x1)
④x1+f(x1)<x2+f(x2)
其中正确的命题序号是 .
【答案】②③
【解析】解:f′(x)=lnx+1,
x∈(0, )时,f′(x)<0,∴f(x)在(0, )单调递减,
x∈( ,+∞),f′(x)>0,.∴f(x)在( ,+∞)上单调递增.
①令g(x)=f(x)﹣x=xlnx﹣x,
则g′(x)=lnx,设x1,x2∈(1,+∞),
则g′(x)>0,∴函数g(x)在(1,+∞)上是增函数,
∴由x2>x1得g(x2)>g(x1);
∴f(x2)﹣x2>f(x1)﹣x1,∴ >1;故①错误;
②令g(x)= =lnx,则g′(x)= ,(0,+∞)上函数单调递增,
∵x2>x1>0,∴g(x2)>g(x1),∴x2f(x1)<x1f(x2),即②正确,
③当lnx1>﹣1时,f(x)单调递增,
∴x1f(x1)+x2f(x2)﹣2x2f(x1)=x1[f(x1)﹣f(x2)]+x2[f(x2)﹣f(x1)]=(x1﹣x2)[f(x1)﹣f(x2)]>0
∴x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),
∵x2f(x1)<x1f(x2),
利用不等式的传递性可以得到x1f(x1)+x2f(x2)>2x2f(x1),故③正确.
④令h(x)=f(x)+x=xlnx+x,则h′(x)=lnx+2,
∴x∈(0, )时,h′(x)<0,
∴函数h(x)在(0, )上单调递减,
设x1,x2∈(0, ),所以由x1<x2得h(x1)>h(x2),
∴f(x1)+x1>f(x2)+x2,故④错误;
所以答案是:②③
【考点精析】利用命题的真假判断与应用对题目进行判断即可得到答案,需要熟知两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
【题目】某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另30人比较粗心.
(1)试根据上述数据完成2×2列联表;
数学成绩及格 | 数学成绩不及格 | 合计 | |
比较细心 | |||
比较粗心 | |||
合计 |
(2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系. 参考数据:独立检验随机变量K2的临界值参考表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
【题目】某品牌新款夏装即将上市,为了对夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:
连锁店 | A店 | B店 | C店 | |||
售价x(元) | 80 | 86 | 82 | 88 | 84 | 90 |
销售量y(件) | 88 | 78 | 85 | 75 | 82 | 66 |
(1)以三家连锁店分别的平均售价和平均销量为散点,求出售价与销量的回归直线方程 ;
(2)在大量投入市场后,销售量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该款夏装在销售上获得最大利润,该款夏装的单价应定为多少元(保留整数)? .