题目内容
20.已知向量$\overrightarrow{a}$=(1,3),向量$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=5,且|$\overrightarrow{a}$+$\overrightarrow{b}$|=3$\sqrt{5}$,则|$\overrightarrow{b}$|=( )A. | $\sqrt{5}$ | B. | $\sqrt{10}$ | C. | 5 | D. | 15 |
分析 直接利用向量的模以及向量的数量积求解即可.
解答 解:向量$\overrightarrow{a}$=(1,3),|$\overrightarrow{a}$|=$\sqrt{10}$,
向量$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=5,且|$\overrightarrow{a}$+$\overrightarrow{b}$|=3$\sqrt{5}$,
∴${\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}=45$.
即10+10+${\overrightarrow{b}}^{2}$=45
则|$\overrightarrow{b}$|=5.
故选:C.
点评 本题考查向量的数量积的运算,考查计算能力.
练习册系列答案
相关题目
11.从区间(0,2)内随机取两个数x,y,则使$\frac{y}{x}$≥4的概率为( )
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{7}{8}$ |
8.定义$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$为n个正数p1,p2,…,pn的“均倒数”.若已知数列{an}的前n项的“均倒数”为$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}+1}{4}$,则$\frac{1}{{b}_{1}{b}_{2}}+\frac{1}{{b}_{2}{b}_{3}}+…+\frac{1}{{b}_{9}{b}_{10}}$=( )
A. | $\frac{1}{11}$ | B. | $\frac{9}{10}$ | C. | $\frac{10}{11}$ | D. | $\frac{11}{12}$ |
5.曲线y=$\sqrt{1-{x}^{2}}$+1上存在不同的两点关于直线l对称,则直线l的方程可以是( )
A. | y=-3x+4 | B. | y=x | C. | y=-x+2 | D. | y=x+1 |