ÌâÄ¿ÄÚÈÝ
7£®ÒÑÖª¼×£¬ÒÒÁ½ÃûÔ˶¯Ô±µÄ·£ÇòÃüÖÐÂÊ·Ö±ðΪ0.8ºÍ0.6£¬¼×ÔÚÎÞÈË·ÀÊØÏÂÉÏÀºÃüÖÐÂÊΪ0.95£¬ÒÑÖª·£ÇòÖÐÒ»ÇòµÃ1·Ö£¬ÉÏÀºÃüÖеÃ2·Ö£®£¨1£©ÈôÁ½È˸÷·£Á½´ÎÇò£¬ÇóÒ»¹²·£ÖÐ2´ÎµÄ¸ÅÂÊ£»
£¨2£©¼ÙÈôÔÚÒ»³¡±ÈÈüÖм׻ñµÃÒ»´ÎÎÞÈË·ÀÊصÄÉÏÀº»ú»á£¬´Ëʱ·ÀÊØÇòÔ±ÎÞ·¨ÐγÉÓÐЧ·ÀÊØ£¬Ö»ÄÜÑ¡Ôñ·¸¹æ»òʲô¶¼²»×ö£¬¼ÙÉè·ÀÊØÇòÔ±·¸¹æ£¬¼×ÇòÔ±ÈÔÈ»ÓÐ$\frac{1}{5}$µÄ¸ÅÂÊÃüÖдËÇò£¬ÈôÃüÖеõ½2·Ö²¢×·¼ÓÒ»´Î·£Çò£¬ÈôÔÚ·ÀÊØÇòÔ±·¸¹æµÄÇé¿öϼ×ûÓÐÃüÖУ¬Ôò¼×·£ÇòÁ½´Î£¬ÎÊ´Ëʱ·ÀÊØÇòÔ±Ó¦²»Ó¦¸Ã·¸¹æ£¿
·ÖÎö £¨1£©Á½È˸÷·£Á½´ÎÇò£¬ÇóÒ»¹²·£ÖÐ2´Î·ÖÈýÖÖÇé¿ö£º¢Ù¼×·£ÖÐÁ½´Î£¬ÒÒ¶¼Ã»·£ÖТÚÒÒ·£ÖÐÁ½´Î£¬¼×¶¼Ã»·£ÖТۼ×ÒÒ¸÷·£ÖÐÒ»´Î£¬·£¶ªÒ»´Î£¬·Ö±ðËã³ö¸ÅÂÊÏà¼Ó¼´¿É£»
£¨2£©·Ö±ðËã³ö·ÀÊØÇòԱʲô¶¼²»×öºÍ·¸¹æʱºò£¬¼×µÄµÃ·ÖÇé¿ö¾ÍºÃ£®
½â´ð ½â£º£¨1£©Á½È˸÷·£Á½´ÎÇò£¬ÇóÒ»¹²·£ÖÐ2´Î·ÖÈýÖÖÇé¿ö£º
¢Ù¼×·£ÖÐÁ½´Î£¬ÒÒ¶¼Ã»·£ÖУ¬¸ÅÂÊΪ£º0.8¡Á0.8¡Á0.4¡Á0.4=0.1024
¢ÚÒÒ·£ÖÐÁ½´Î£¬¼×¶¼Ã»·£ÖУ¬¸ÅÂÊΪ£º0.6¡Á0.6¡Á0.2¡Á0.2=0.0144
¢Û¼×ÒÒ¸÷·£ÖÐÒ»´Î£¬·£¶ªÒ»´Î£¬¸ÅÂÊΪ£º2¡Á0.8¡Á0.2¡Á2¡Á0.6¡Á0.4=0.1536
ËùÒÔÈôÁ½È˸÷·£Á½´ÎÇò£¬ÇóÒ»¹²·£ÖÐ2´ÎµÄ¸ÅÂÊΪ£º0.1024+0.0144+0.1536=0.2704£»
£¨2£©¢ÙÈô·ÀÊØÇòÔ±Éèʲô¶¼²»×ö£¬¼×µÄµÃ·Ö¹À¼ÆֵΪ£º0.95¡Á2=1.9
¢ÚÈô·ÀÊØÇòÔ±·¸¹æ£¬¼×µÄµÃ·Ö¹À¼ÆֵΪ£º0.2¡Á2+0.8+0.8¡Á0.8=1.84
ËùÒÔ·ÀÊØÇòÔ±Ó¦¸Ã·¸¹æ£®
µãÆÀ ±¾Ì⿼²éÁËÏ໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʳ˷¨¹«Ê½£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
18£®An£¨n¡ÊN£©ÏµÁеÄÖ½ÕŹæ¸ñÈçͼ£¬ÆäÌصãÊÇ
¢ÙA0£¬A1£¬A2£¬¡AnËùÓйæ¸ñµÄÖ½Õŵij¤¿í±È¶¼Ïàͬ£»
¢ÚA0¶Ô²Ãºó¿ÉÒԵõ½Á½ÕÅA1£¬A1¶Ô²Ãºó¿ÉÒԵõ½Á½ÕÅA2£¬¡£¬An-1¶Ô²Ãºó¿ÉÒԵõ½Á½ÕÅAn£»
Èô÷ƽ·½ÀåÃ×ÖØÁ¿Îªb¿ËµÄA0£¬A1£¬A2£¬¡AnÖ½ÕŸ÷Ò»ÕÅ£¬ÆäÖÐA4Ö½½Ï¶Ì±ßµÄ³¤ÎªaÀåÃ×£¬¼ÇÕ⣨n+1£©Ö½ÕŵÄÖØÁ¿Ö®ºÍΪSn+1£¬ÔòÏÂÁÐÂ۶ϴíÎóµÄÊÇ£¨¡¡¡¡£©
¢ÙA0£¬A1£¬A2£¬¡AnËùÓйæ¸ñµÄÖ½Õŵij¤¿í±È¶¼Ïàͬ£»
¢ÚA0¶Ô²Ãºó¿ÉÒԵõ½Á½ÕÅA1£¬A1¶Ô²Ãºó¿ÉÒԵõ½Á½ÕÅA2£¬¡£¬An-1¶Ô²Ãºó¿ÉÒԵõ½Á½ÕÅAn£»
Èô÷ƽ·½ÀåÃ×ÖØÁ¿Îªb¿ËµÄA0£¬A1£¬A2£¬¡AnÖ½ÕŸ÷Ò»ÕÅ£¬ÆäÖÐA4Ö½½Ï¶Ì±ßµÄ³¤ÎªaÀåÃ×£¬¼ÇÕ⣨n+1£©Ö½ÕŵÄÖØÁ¿Ö®ºÍΪSn+1£¬ÔòÏÂÁÐÂ۶ϴíÎóµÄÊÇ£¨¡¡¡¡£©
A£® | ´æÔÚn¡ÊN£¬Ê¹µÃSn+1=32$\sqrt{2}$a2b | B£® | ´æÔÚn¡ÊN£¬Ê¹µÃSn+1=16$\sqrt{2}$a2b | ||
C£® | ¶ÔÓÚÈÎÒân¡ÊN£¬Ê¹µÃSn+1¡Ü32$\sqrt{2}$a2b | D£® | ¶ÔÓÚÈÎÒân¡ÊN£¬Ê¹µÃSn+1¡Ý16$\sqrt{2}$a2b |
15£®ÔÚ¡÷ABCÖУ¬sin2A¡Ýsin2B+sin2C-sinBsinC£¬Ôò¡ÏAµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£® | £¨0£¬$\frac{¦Ð}{6}$] | B£® | £¨0£¬$\frac{¦Ð}{3}$] | C£® | [$\frac{¦Ð}{6}$£¬¦Ð£© | D£® | [$\frac{¦Ð}{3}$£¬¦Ð£© |
2£®ÒÑÖª¼¯ºÏ={x|1-x£¾0}£¬B={x|2x£¾1}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£® | ∅ | B£® | {x|0£¼x£¼1} | C£® | {x|x£¼0} | D£® | {x|x£¾1} |
12£®A¡¢BÊǰ뾶Ϊ2µÄÔ²OÉϵÄÁ½µã£¬MÊÇÏÒABÉϵĶ¯µã£¬Èô¡÷AOBΪֱ½ÇÈý½ÇÐΣ¬Ôò$\overrightarrow{OM}$•$\overrightarrow{AM}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£® | -1 | B£® | -$\frac{1}{2}$ | C£® | 0 | D£® | 2 |
19£®Ä³ËÄÃæÌåµÄÈýÊÓͼÈçͼËùʾ£¬ÕýÊÓͼ¡¢¸©ÊÓͼ¶¼ÊÇÑü³¤Îª2µÄµÈÑüÖ±½ÇÈý½ÇÐΣ¬²àÊÓͼÊDZ߳¤Îª2µÄÕý·½ÐΣ¬Ôò´ËËÄÃæÌåµÄËĸöÃæÖÐÃæ»ý×î´óµÄΪ£¨¡¡¡¡£©
A£® | 2$\sqrt{2}$ | B£® | 4 | C£® | 2$\sqrt{3}$ | D£® | 2$\sqrt{6}$ |
16£®¸ù¾ÝÈçÏÂÑù±¾Êý¾ÝµÃµ½µÄ»Ø¹é·½³ÌΪ$\stackrel{¡Ä}{y}$=bx+a£®Èôa=7.9£¬ÔòxÿÔö¼Ó1¸öµ¥Î»£¬y¾Í£¨¡¡¡¡£©
x | 3 | 4 | 5 | 6 | 7 |
y | 4 | 2.5 | -0.5 | 0.5 | -2 |
A£® | Ôö¼Ó1.4¸öµ¥Î» | B£® | ¼õÉÙ1.4¸öµ¥Î» | C£® | Ôö¼Ó1.2¸öµ¥Î» | D£® | ¼õÉÙ1.2¸öµ¥Î»£® |
15£®f£¨A¡ÈB£©=f£¨A£©+f£¨B£©=1£¬ÄÇôAºÍBʼþµÄ¹Øϵ£¨¡¡¡¡£©
A£® | ¶ÔÁ¢²»»¥³â | B£® | »¥³â²»¶ÔÁ¢ | C£® | »¥³âÇÒ¶ÔÁ¢ | D£® | ÒÔÉ϶¼²»¶Ô |