题目内容
(本小题满分10分)如图,在直三棱柱中,、分别是、的中点,点在上,. 求证:(1)EF∥平面ABC; (2)平面平面.
见解析。
解析
如图,长方体AC1中,AB=2,BC=AA1=1.E、F、G分别为棱DD1、D1C1、BC的中点.(1)求证:平面平面;(2)在底面A1D1上有一个靠近D1的四等分点H,求证: EH∥平面FGB1;(3)求四面体EFGB1的体积.
(本小题满分13分)如图,在直三棱柱(侧棱垂直于底面的棱柱)中, , , , ,点是的中点. (Ⅰ) 求证:∥平面;(Ⅱ)求AC1与平面CC1B1B所成的角.
如图,在四棱锥中,,,且,E是PC的中点.(1)证明:; (2)证明:;
本小题满分12分)已知三棱锥PABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.(I)证明:CM⊥SN;(II)求SN与平面CMN所成角的大小.
(本小题满分14分)如图,在三棱锥中,面面,是正三角形, ,.(Ⅰ)求证:;(Ⅱ)求平面DAB与平面ABC的夹角的余弦值;(Ⅲ)求异面直线与所成角的余弦值.
(本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.∥,,,.(1)求证:;(2)求直线与平面所成角的正弦值;(3)线段上是否存在点,使// 平面?若存在,求出;若不存在,说明理由.
如图,在正三棱柱ABC—A1B1C1中,底面边长及侧棱长均为2,D是棱AB的中点,(1)求证;(2)求异面直线AC1与B1C所成角的余弦值.
如图,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2,∠ACB=900,M是AA1的中点,N是BC1的中点.(1)求证:MN//平面A1B1C1;(2)求二面角B-C1M-C的平面角余弦值的大小.