题目内容
如图,在正三棱柱ABC—A1B1C1中,底面边长及侧棱长均为2,D是棱AB的中点,(1)求证;(2)求异面直线AC1与B1C所成角的余弦值.
(1)证明见解析;(2)。
解析
如图,在四棱锥中,底面,, , ,是的中点.(Ⅰ)证明:;(Ⅱ)证明:平面;(Ⅲ)求二面角的正切值.
(本小题满分10分)如图,在直三棱柱中,、分别是、的中点,点在上,. 求证:(1)EF∥平面ABC; (2)平面平面.
如图,在三棱锥中,侧面与侧面均为等边三角形,,为中点.(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值.
(13分)如图,在边长为2的菱形中,,是和的中点.(Ⅰ)求证:平面 ;(Ⅱ)若,求与平面所成角的正弦值.
(本题分12分)如图,在长方体中,,为中点.(Ⅰ)求证:;(Ⅱ)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由.(Ⅲ)若二面角的大小为,求的长.
(本题满分14分 )如图,在三棱柱中,所有的棱长都为2,. (1)求证:;(2)当三棱柱的体积最大时,求平面与平面所成的锐角的余弦值.
(本题满分12分)如图,四棱锥中,底面为矩形,⊥底面,,点是棱的中点. (Ⅰ)求点到平面的距离;(Ⅱ) 若,求二面角的平面角的余弦值 .
(本小题满分14分)如图所示,在长方体中,AB=AD=1,AA1=2,M是棱CC1的中点(Ⅰ)求异面直线A1M和C1D1所成的角的正切值;(Ⅱ)证明:平面ABM⊥平面A1B1M1