题目内容

(2013•虹口区二模)已知函数y=2sin(x+
π
2
)cos(x-
π
2
)
与直线y=
1
2
相交,若在y轴右侧的交点自左向右依次记为M1,M2,M3,…,则|
M1M13
|
等于(  )
分析:利用三角函数的诱导公式与二倍角的正弦可知,y=sin2x,依题意可求得M1,M2,M3,…M13的坐标,从而可求|
M1M13
|
的值.
解答:解:∵y=2sin(x+
π
2
)cos(x-
π
2
)=2cosxsinx=sin2x,
∴由题意得:sin2x=
1
2

∴2x=2kπ+
π
6
或2x=2kπ+
6

∴x=kπ+
π
12
或x=kπ+
12
,k∈Z,
∵正弦曲线y=sin2x与直线y=
1
2
在y轴右侧的交点自左向右依次记为M1,M2,M3,…,
∴得M1
π
12
,0),M2
12
,0),M3(π+
π
12
),M4(π+
12
),…M13(6π+
π
12
,0),
M1M13
=(6π,0),
|
M1M13
|
=6π.
故选A.
点评:本题考查函数的零点与方程根的关系,着重考查正弦函数的性质,求得M1,M13的坐标是关键,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网