题目内容
【题目】已知动点M到定点F1(-2,0)和F2(2,0)的距离之和为.
(1)求动点M的轨迹C的方程;
(2)设N(0,2),过点P(-1,-2)作直线l,交曲线C于不同于N的两点A,B,直线NA,NB的斜率分别为k1,k2,求k1+k2的值.
【答案】(1);(2)4
【解析】
本题考查椭圆的基本量间的关系及韦达定理的应用
(1)考查椭圆的基本量间的关系
(2)是直线与椭圆相交于两点,先设出两点坐标,本题的突破口是在消参后的方程中找出两根之和、两根之积,整理斜率的表达式,在本问中需考虑直线的斜率是否存在
解:(1)由椭圆的定义,可知点M的轨迹是以F1,F2为焦点,为长轴长的椭圆.
由c=2,a=2 ,得b=2.
故动点M的轨迹C的方程为.
(2)当直线l的斜率存在时,设其方程为y+2=k(x+1),
由得(1+2k2)x2+4k(k-2)x+2k2-8k=0.
Δ=[4k(k-2)]2-4(1+2k2)(2k2-8k)>0,则k>0或k<-
设A(x1,y1),B(x2,y2),则 , .
从而
当直线l的斜率不存在时,得
所以k1+k2=4.
综上,恒有k1+k2=4.
【题目】《流浪地球》是由刘慈欣的科幻小说改编的电影,在2019年春节档上影,该片上影标志着中国电影科幻元年的到来;为了振救地球,延续百代子孙生存的希望,无数的人前仆后继,奋不顾身的精神激荡人心,催人奋进.某网络调查机构调查了大量观众的评分,得到如下统计表:
评分 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
频率 | 0.03 | 0.02 | 0.02 | 0.03 | 0.04 | 0.05 | 0.08 | 0.15 | 0.21 | 0.36 |
(1)求观众评分的平均数?
(2)视频率为概率,若在评分大于等于8分的观众中随机地抽取1人,他的评分恰好是10分的概率是多少?
(3)视频率为概率,在评分大于等于8分的观众中随机地抽取4人,用表示评分为10分的人数,求的分布列及数学期望.