题目内容
已知正项数列
的前
项和
,
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)定理:若函数
在区间D上是凹函数,且
存在,则当
时,总有
.请根据上述定理,且已知函数
是
上的凹函数,判断
与
的大小;
(Ⅲ)求证:
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548548380.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548564192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548579507.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548611874.gif)
(Ⅰ)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548548380.gif)
(Ⅱ)定理:若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548657270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548657281.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548673573.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548689796.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548704543.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548720422.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548735215.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548751339.gif)
(Ⅲ)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548767415.gif)
(Ⅰ)
(
).
(Ⅱ)
.
(Ⅲ)由(Ⅱ),得
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548782357.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548798382.gif)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548860404.gif)
(Ⅲ)由(Ⅱ),得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548860670.gif)
(Ⅰ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548876221.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548891643.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548907244.gif)
由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548923376.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548907244.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548954234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132549032803.gif)
整理,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132549047708.gif)
由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548923376.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132549079415.gif)
∴数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548923376.gif)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548782357.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132549125221.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548782357.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548798382.gif)
(Ⅱ)由(Ⅰ)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132549297617.gif)
对于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132549313321.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132549328380.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132549344509.gif)
根据定理,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132549359740.gif)
整理,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132549375715.gif)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132549391733.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132549406537.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132549422416.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132549437971.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548860404.gif)
(Ⅲ)由(Ⅱ),得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132548860670.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目