题目内容
已知函数
.
(Ⅰ)求
的最小值;
(Ⅱ)若对所有
都有
,求实数
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003462619.png)
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003494468.png)
(Ⅱ)若对所有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003509359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003540642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003572285.png)
(1)当
时,
取得最小值
. (2)
的取值范围是
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003587422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003494468.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003634336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003572285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003665457.png)
试题分析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003681479.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003696482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003681479.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003743678.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003759581.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003790453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003821593.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003837536.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003681479.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003884662.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003915750.png)
所以,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003587422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003494468.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003634336.png)
(2)依题意,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003540642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003993456.png)
即不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014004008622.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014004040581.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014004055715.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240140040861089.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014004102363.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240140041331080.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014004149487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014004180506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014004211463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014004227485.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003572285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003665457.png)
点评:中档题,本题属于导数应用中的常见问题,通过研究函数的单调性,明确最值情况。涉及不等式恒成立问题,往往通过构造函数,研究函数的最值,得到确定参数(范围)的目的。对数函数要注意其真数大于0.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目