题目内容
5.某小组中有男生3人,女生2人,从该小组中选派3人去参加植树,要求选派的这3人中至少有一人是男生,一共有几种不同选法( )A. | 20 | B. | 15 | C. | 10 | D. | 9 |
分析 由于女生只有2名,从该小组中选派3人去参加植树,一定满足选派的这3人中至少有一人是男生,即可得出结论.
解答 解:从3名男生和2名女生中选出3人去参加植树,要求选派的这3人中至少有一人是男生,一共有C53=10种选法,
故选:10.
点评 本题考查组合知识,考查学生分析解决问题的能力,比较基础.
练习册系列答案
相关题目
13.已知$\overrightarrow{a}$=($\frac{1}{\sqrt{3}}$,sinα),$\overrightarrow{b}$=(2cosα,$\frac{3}{2}$),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则锐角α的值为( )
A. | $\frac{π}{12}$或$\frac{5π}{12}$ | B. | $\frac{π}{6}$或$\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
20.已知△ABC的顶点分别为A(1,-1,2),B(5,-6,2),C(1,3,-1),则边BC上的中线长为( )
A. | $\frac{\sqrt{21}}{2}$ | B. | $\frac{\sqrt{26}}{2}$ | C. | $\frac{\sqrt{29}}{2}$ | D. | $\frac{\sqrt{23}}{2}$ |
13.某影院有三间放映厅,同时放映三部不同的电影,此时,甲、乙两位同学各自买票看其中的一场,若每位同学观看各部影片的可能性相同,则这两位同学观看同一部影片的概率为( )
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |