题目内容
【题目】一个样本M的数据是x1 , x2 , ,xn , 它的平均数是5,另一个样本N的数据x12 , x22 , ,xn2它的平均数是34.那么下面的结果一定正确的是( )
A.SM2=9
B.SN2=9
C.SM2=3
D.Sn2=3
【答案】A
【解析】解:设样本M的数据x12,x22,,xn2它的方差为S2,则
S2= [(x1﹣5)2+(x2﹣5)^2+(x3﹣5)2+(xn﹣5)2]
= [x12+x22+x32xn2﹣10(x1+x2+x3++xn)+25×n]
=34﹣10×5+25=9,
∴SM2=9.
故选:A.
【考点精析】认真审题,首先需要了解极差、方差与标准差(标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差).
练习册系列答案
相关题目
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B,A>0,ω>0,|φ|< 在某一个周期的图象时,列表并填入了部分数据,如表:
ωx+φ | 0 | π | 2π | ||
x | x1 | x2 | x3 | ||
Asin(ωx+φ)+B | 0 | 0 | ﹣ | 0 |
(1)请求出上表中的x1 , x2 , x3 , 并直接写出函数f(x)的解析式;
(2)若3sin2 ﹣ mf( ﹣ )≥m+2对任意x∈[0,2π]恒成立,求实数m的取值范围.