题目内容
【题目】如图,在等腰梯形ABCD中,AB//CD,∠ABC=,BC=CD=CE=1,EC⊥平面ABCD,EFAC,P是线段EF上的动点
(1)求证:平面BCE⊥平面ACEF;
(2)求平面PAB与平面BCE所成锐二面角的最小值
【答案】(1)证明见解析;(2)
【解析】
(1)在梯形中可证明,可得平面,即可证明面面垂直;
(2)建立空间直角坐标系,求平面的法向量,利用公式求二面角,根据二次函数求最值即可.
(1)证明:如图:
在等腰梯形ABCD中,
,
平面
又
平面,
又平面
平面平面
(2)由(1)可建立以C点为坐标原点,分别以直线CA, CB, CE为x轴,y轴,z轴的空间直角坐标系,如图,
令则
设为平面PAB的一个法向量,
由得,取,得,
是平面BCE的一个法向量,
当时,有最大值,
又为锐角,
的最小值为.
练习册系列答案
相关题目