题目内容
已知二次函数(1) 画出函数图像(2)指出图像的开口方向、对称轴方程、顶点坐标;(3)求函数的最大值或最小值;(4)写出函数的单调区间
(1)略(2)开口向下;对称轴为;顶点坐标为;(3)函数的最大值为1;无最小值;(4)函数在上是增加的,在上是减少的
解析
(本小题满分12分)某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)
(本小题12分)运货卡车以每小时千米的速度匀速行驶130千米(单位:千米/小时).假设汽油的价格是每升2a元,而汽车每小时耗油升,司机的工资是每小时14a元.(1)求这次行车总费用关于的表达式;(2)当为何值时,这次行车的总费用最低,并求出最低费用的值(a为常数) .
已知二次函数的顶点坐标为,且,(1)求的解析式,(2)∈,的图象恒在的图象上方,试确定实数的取值范围,(3)若在区间上单调,求实数的取值范围.
(12分) 若二次函数f(x)=ax2+bx+c(a≠0)的图象关于y轴对称,且f(-2)>f(3),设m>-n>0.(1) 试证明函数f(x)在(0,+∞)上是减函数;(2) 试比较f(m)和f(n)的大小,并说明理由.
(16分)已知二次函数的图像关于直线对称,且在轴上截得的线段长为2.若的最小值为,求:(1)函数的解析式;(2)函数在上的最小值.
(本小题满分12分) 已知函数⑴ 若对一切实数x恒成立,求实数a的取值范围。⑵ 求在区间上的最小值的表达式。
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米。(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
.(本小题13分)计算下列各式(1)