题目内容

已知椭圆的焦点坐标为F1(-5,0),F2(5,0),离心率e=
5
3
,P为椭圆上一点.
(1)求椭圆的标准方程;
(2)若PF1⊥PF2,求S△PF1F2
(1)由题知:c=5,e=
c
a
=
5
3
,得a=3
5
,所以b2=a2-c2=20
所以椭圆的标准方程为:
x2
45
+
y2
20
=1
------------(5分)
(2)由|PF1|+|PF2|=2a=6
5
,|PF1|2+|PF2|2=|F1F2|2=4c2,可得:
|PF1|•|PF2|=40,所以,S△PF1F2.=
1
2
|PF1|•|PF2|=20------------(10分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网