题目内容

已知椭圆
x2
2
+y2=1
的左右焦点分别为F1,F2,若过点P(0,-2)及F1的直线交椭圆于A,B两点,求△ABF2的面积.
由题意,得
∵椭圆
x2
2
+y2=1
的左焦点为F1(-1,0),点P(0,-2)
∴直线PF1的斜率为k=-2,得直线AB方程为y=-2(x+1),化简得y=-2x-2
y=-2x-2
x2
2
+
y2
1
=1
消去x,可得9y2+4y-4=0,
设A(x1,y1)、B(x2,y2),
∴y1+y2=-
4
9
,y1y2=-
4
9

因此,可得|y1-y2|=
(y1+y2)2-4y1y2
=
4
10
9

∵椭圆的焦距为|F1F2|=2
∴△ABF2的面积为S=
1
2
|F1F2|•|y1-y2|=
4
10
9

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网