题目内容
计算
[
+
+
+…+
]=
.
lim |
n→∞ |
1 |
1×3 |
1 |
2×4 |
1 |
3×5 |
1 |
n(n+2) |
3 |
4 |
3 |
4 |
分析:先利用裂项求和可得,
+
+…+
=
-
,代入可求极限
[
+
+…+
]=
[
-
]
1 |
1×3 |
1 |
2×4 |
1 |
n(n+2) |
3 |
4 |
2n+3 |
2(n+1)(n+2) |
lim |
n→∞ |
1 |
1×3 |
1 |
2×4 |
1 |
n(n+2) |
lim |
n→∞ |
3 |
4 |
2n+3 |
2(n+1)(n+2) |
解答:解:∵2[
+
+…+
]
=1-
+
-
+…+
-
=1+
-
-
=
-
∴
+
+…+
=
-
∴
[
+
+…+
]=
[
-
]=
故答案为:
1 |
1×3 |
1 |
2×4 |
1 |
n(n+2) |
=1-
1 |
3 |
1 |
2 |
1 |
4 |
1 |
n |
1 |
n+2 |
=1+
1 |
2 |
1 |
n+1 |
1 |
n+2 |
3 |
2 |
2n+3 |
(n+1)(n+2) |
∴
1 |
1×3 |
1 |
2×4 |
1 |
n(n+2) |
3 |
4 |
2n+3 |
2(n+1)(n+2) |
∴
lim |
n→∞ |
1 |
1×3 |
1 |
2×4 |
1 |
n(n+2) |
lim |
n→∞ |
3 |
4 |
2n+3 |
2(n+1)(n+2) |
3 |
4 |
故答案为:
3 |
4 |
点评:本题主要考查了数列极限的求解,解题的关键是利用裂项求和,但本题裂项是考生容易出现错误的地方,由于
=
(
-
)中的
容易漏掉,注意此类裂项的规律
=
×(
-
)
1 |
(n+2)n |
1 |
2 |
1 |
n |
1 |
n+2 |
1 |
2 |
1 |
n(n+k) |
1 |
k |
1 |
n |
1 |
n+k |
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
计算
[1+
+(
)2+(
)3+…+(
)n-1]的结果是( )
lim |
n→∞ |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
A、
| ||
B、3 | ||
C、
| ||
D、2 |