题目内容

计算
lim
n→∞
[
1
1×3
+
1
2×4
+
1
3×5
+…+
1
n(n+2)
]
=
3
4
3
4
分析:先利用裂项求和可得,
1
1×3
+
1
2×4
+…+
1
n(n+2)
=
3
4
-
2n+3
2(n+1)(n+2)
,代入可求极限
lim
n→∞
[
1
1×3
 +
1
2×4
+…+
1
n(n+2)
]
=
lim
n→∞
[
3
4
-
2n+3
2(n+1)(n+2)
]
解答:解:∵2[
1
1×3
+
1
2×4
+…+
1
n(n+2)
]
=1-
1
3
+
1
2
-
1
4
+…+
1
n
-
1
n+2

=1+
1
2
-
1
n+1
-
1
n+2
=
3
2
-
2n+3
(n+1)(n+2)

1
1×3
+
1
2×4
+…+
1
n(n+2)
=
3
4
-
2n+3
2(n+1)(n+2)

lim
n→∞
[
1
1×3
 +
1
2×4
+…+
1
n(n+2)
]
=
lim
n→∞
[
3
4
-
2n+3
2(n+1)(n+2)
]
=
3
4

故答案为:
3
4
点评:本题主要考查了数列极限的求解,解题的关键是利用裂项求和,但本题裂项是考生容易出现错误的地方,由于
1
(n+2)n
=
1
2
(
1
n
-
1
n+2
)
中的
1
2
容易漏掉,注意此类裂项的规律
1
n(n+k)
=
1
k
×(
1
n
-
1
n+k
)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网