题目内容

【题目】某地区2009年至2015年农村居民家庭人均纯收入y(单位:千元)的数据如表:

年份

2009

2010

2011

2012

2013

2014

2015

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9


(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
参考数据:(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.

【答案】
(1)解:由所给数据计算得

= =4,

= =4.4,

(ti2=9+4+1+0+1+4+9=28,

(ti )(yi )=(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.,

= =0.5, =4.3﹣0.5×4=2.3,

所求回归方程为y=0.5t+2.3


(2)解:由(1)知,b=0.5>0,故2009年至2015年该地区居民家庭人均纯收入逐年增加,平均每年增加0.5千元.

将2017年的年份代号t=9代入(1)的回归方程,得y=6.8,

故预测该地区2017年该地区居民家庭人均纯收入约为6.8千元.


【解析】(1)先求出年份代号t和人均纯收入y的平均数,得到这组数据的样本中心点,利用最小二乘法求出线性回归方程的系数,代入样本中心点求出a的值,写出线性回归方程;(2)由(1)知,b=0.5>0,2009年至2015年该地区居民家庭人均纯收入逐年增加,平均每年增加0.5千元,求得2017年的年份代号t=9代入(1)的回归方程,得y的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网