题目内容
【题目】某地区2009年至2015年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为: . .
参考数据:(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.
【答案】
(1)解:由所给数据计算得
= =4,
= =4.4,
(ti﹣ )2=9+4+1+0+1+4+9=28,
(ti﹣ )(yi﹣ )=(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.,
= =0.5, =4.3﹣0.5×4=2.3,
所求回归方程为y=0.5t+2.3
(2)解:由(1)知,b=0.5>0,故2009年至2015年该地区居民家庭人均纯收入逐年增加,平均每年增加0.5千元.
将2017年的年份代号t=9代入(1)的回归方程,得y=6.8,
故预测该地区2017年该地区居民家庭人均纯收入约为6.8千元.
【解析】(1)先求出年份代号t和人均纯收入y的平均数,得到这组数据的样本中心点,利用最小二乘法求出线性回归方程的系数,代入样本中心点求出a的值,写出线性回归方程;(2)由(1)知,b=0.5>0,2009年至2015年该地区居民家庭人均纯收入逐年增加,平均每年增加0.5千元,求得2017年的年份代号t=9代入(1)的回归方程,得y的值.
【题目】某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为:
1 | 2 | 3 | 4 | 5 | |
0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
商场经销该商品,可采用不同形式的分期付款,付款的期数(单位: )与商场经销一件商品的利润(单位:元)满足如下关系:
(Ⅰ)若记事件“购买该商品的3位顾客中,至少有1位采用一次性全额付款方式”为,试求事件的概率;
(Ⅱ)求商场经销一件商品的利润的分布列及期望.