ÌâÄ¿ÄÚÈÝ
18£®ÒÑÖª$\overrightarrow{a}$=£¨-3£¬2£©£¬$\overrightarrow{b}$=£¨-1£¬0£©£¬ÏòÁ¿¦Ë$\overrightarrow{a}$+$\overrightarrow{b}$Óë$\overrightarrow{a}$-2$\overrightarrow{b}$´¹Ö±£¬ÔòʵÊý¦ËµÄֵΪ£¨¡¡¡¡£©A£® | $\frac{1}{7}$ | B£® | -$\frac{1}{7}$ | C£® | $\frac{1}{6}$ | D£® | -$\frac{1}{6}$ |
·ÖÎö ¸ù¾ÝÁ½ÏòÁ¿´¹Ö±£¬ÊýÁ¿»ýΪ0£¬Áгö·½³ÌÇó³ö¦ËµÄÖµ¼´¿É£®
½â´ð ½â£º¡ß$\overrightarrow{a}$=£¨-3£¬2£©£¬$\overrightarrow{b}$=£¨-1£¬0£©£¬
¡à${\overrightarrow{a}}^{2}$=13£¬${\overrightarrow{b}}^{2}$=1£¬$\overrightarrow{a}$•$\overrightarrow{b}$=3£»
ÓÖÏòÁ¿¦Ë$\overrightarrow{a}$+$\overrightarrow{b}$Óë$\overrightarrow{a}$-2$\overrightarrow{b}$´¹Ö±£¬
¡à£¨¦Ë$\overrightarrow{a}$+$\overrightarrow{b}$£©•£¨$\overrightarrow{a}$-2$\overrightarrow{b}$£©=¦Ë${\overrightarrow{a}}^{2}$+£¨1-2¦Ë£©$\overrightarrow{a}$•$\overrightarrow{b}$-2${\overrightarrow{b}}^{2}$=0£¬
¼´13¦Ë+3£¨1-2¦Ë£©-2=0£¬
½âµÃ¦Ë=-$\frac{1}{7}$£®
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÁËƽÃæÏòÁ¿µÄ´¹Ö±Óë×ø±êÔËËãÎÊÌ⣬Ҳ¿¼²éÁËƽÃæÏòÁ¿µÄÊýÁ¿»ýµÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®Èôcos£¨$\frac{¦Ð}{3}$-2x£©=-$\frac{7}{8}$£¬Ôòcos£¨$\frac{¦Ð}{6}$-x£©µÄֵΪ£¨¡¡¡¡£©
A£® | -$\frac{1}{4}$ | B£® | ¡À$\frac{1}{4}$ | C£® | $\frac{7}{8}$ | D£® | ¡À$\frac{7}{8}$ |
3£®ÈôÔ²x2+y2-2kx+2y+2=0£¨k£¾0£©ÓëÁ½×ø±êÖáÎÞ¹«¹²µã£¬ÄÇôʵÊýkµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£® | 0£¼k£¼$\sqrt{2}$ | B£® | 1£¼k£¼$\sqrt{2}$ | C£® | 0£¼k£¼1 | D£® | k£¾$\sqrt{2}$ |