题目内容

【题目】已知对任意实数x,有f(﹣x)=﹣f(x),g(﹣x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时(
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0

【答案】B
【解析】解:∵对任意实数x,有f(﹣x)=﹣f(x),g(﹣x)=g(x), ∴f(x)为奇函数;g(x)为偶函数,
∵x>0时,f′(x)>0,g′(x)>0,
∴f(x)在(0,+∞)上为增函数;g(x)在(0,+∞)上为增函数,
∴f(x)在(﹣∞,0)上为增函数;g(x)在(﹣∞,0)上为减函数,
∴f′(x)>0;g′(x)<0,
故选:B.
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网