题目内容

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限接近圆的面积,并创立了“割圆术”,利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”,如圆是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )(参考数据:sin15°=0.2588,sin7.50=0.1305)
A.12
B.24
C.48
D.96

【答案】C
【解析】解:第1次执行循环体后,S= = ,不满足退出循环的条件,则n=12,

第2次执行循环体后,S= =3,不满足退出循环的条件,则n=24,

第3次执行循环体后,S= ≈3.1056,不满足退出循环的条件,则n=48,

第4次执行循环体后,S= ≈3.132,满足退出循环的条件,

故输出的n值为48,

故选:C.

【考点精析】认真审题,首先需要了解程序框图(程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网